No Title

Li HUANG August 07, 2008

Outline

Bioisostere and Isostere

Report on the possibility of thioureas catalyzed Claisen rearrangement

Definition of isostere

Isosteres are

molecules or ions with the same number of atoms and the same number of valence electrons.

As a result, they can exhibit similar pharmacokinetic and pharmacodynamic properties

Bioisostere

Friedman (1951):Bioisosteres are atoms or molecules that fit the broadest definition for isosteres and have the same type of biological activity.

Thornber(1979): Groups or molecules which have chemical and physical similarities producing broadly similar biological effects.

Why?

- •Greater selectivity
- •Less side effects
- Decreased toxicity
- Improved pharmacokinetics (solubility-hydrophobicity)
- Increased stability
- •Simplified synthesis
- Patented lead compounds

Classes of Bioisosteres

Classical bioisosteres
Nonclassical bioisosteres

 \square

ç

• H to F replacement

Hydride Displacement Law					
С	N	0	F	Ne	Na*
	CH	NH	OH	FH	-
		CH ₂	$\rm NH_2$	OH ₂	FH_2^+
			CH3	NH_3	OH_3^+
				CH_4	$\rm NH_4^+$

Nonclassical bioisosteres

Cyclic vs Noncyclic replacement

Balsamo, A.; Broccali, G.; Lapucci, A.; Maxxhia, B.; Macchia, F.; Orlandini, S.; Rossello, A. *J. Med. Chem.* **1989**, *32*, 1398.

Isosteres in catalyst design

A Brønsted Acid Catalyst for the Enantioselective Protonation Reaction

Cheon, C. H.; Yamamoto, H. J. Am. Chem. Soc. **2008**, *130*, 9246.

Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626.

Reactivity of the catalysts

Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626.

Reactivity of the catalysts

Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626.

Isostere in catalyst design

	PhOH	PhNHSO ₂ Me	PhSH	PhSeH	
pKa (DMSO)	18.0	12.9	10.3	7.1	_

Catalyst reactivity

	Х	Y	time (h)	Yield (%)	er
3a	0	ОН	96	NR	ND
3b	Ο	SH	96	trace	ND
3c	Ο	NHTf	4.5	>99(98)	77:23
3d	S	NHTf	3.5	>99(97)	89:11
3e	Se	NHTf	3.5	>99(97)	86:14

Mechanism for protonation reaction

HA + PhOH \longrightarrow [PhOH₂]⁺[A]⁻

Possibilities on thioureas catalyzed Claisen rearrangement

Claisen rearrangement was accelerated by protic solvents or Bronsted Acids.

Kristen, M.; Rehbein, J.; Hiersemann, M.; Strassner, T. J. Org. Chem. **2007**, 72, 4001-4011. Severance, D. L.; Jorgensen, W. L. J. Am. Chem. Soc. **1992**, 114, 10966.

Rate acceleration of Claisen rearrangement

Curran, D. P.; Kuo, L. H. *Tetrahedron Lett.* **1995**, *36(37)*, 6647.

Rate acceleration of Claisen rearrangement

Curran, D. P.; Kuo, L. H. Tetrahedron Lett. 1995, 36(37), 6647.

Bis-hydrogen bonded model

Thiourea has weaker accelerating effect than urea

Claisen rearrangement catalyzed by thiourea

	1			2	2	
entry	thiourea	mol%	solvent	T (°C)	time	Conv. (%)
1	3	20	CHCI3	25	5 d	17
2	3	20	CF ₃ CH ₂ OH	25	5 d	44
3	3	20	CF ₃ CH ₂ OH	45	6 h	44
4	3	20	DCE	25	5 d	14
5			CHCI3	25	5 d	10
6			CF ₃ CH ₂ OH	25	5 d	41
7			CF ₃ CH ₂ OH	45	6 h	41
8			DCE	25	5 d	7

Kristen, M.; Rehbein, J.; Hiersemann, M.; Strassner, T. J. Org. Chem. 2007, 72, 4001-4011

Claisen rearrangement catalyzed by thiourea

		Conversion (%)		
entry	t (d)	100 mol% 3	no 3	
1	1	41	23	
2	2	63	41	
3	3	72	52	
4	5	84	57	
5	7	87	74	

Conclusion

♦ Thioureas are ineffective as catalysts for the Claisen rearrangement of 2-alkoxylcarbonyl-substituted allyl vinyl ethers.

♦ It is important to have a suitable catalyst/substrate combination.

 \diamond The transition model proposed is useful in catalyst design.

Bis(hydrogen) bond binding models of thiourea catalysts

Kleiner, C. M.; Schreiner, P. R. Chem. Commun., 2006, 4315.

Thanks!

同一个世界 同一个梦想 One World One Dream

Beijing Olympics 2008

One World One dream

Beijing welcomes you!

编砖 Fuu/a

福娃贝贝 Beibei

Jingjing

编硅欢欢 Hughlum

Yingsing

确硅氓现 Nini

Fish and Lotus	Giant panda	Fire	Tibetan antelope	swallow
Blue	Black	Red	Yellow	Green
Water	Forest	Fire	Earth	Sky
Prosperity	happiness	passion	health	Good fortune

Reactivity of Imine

C=O	C=N
2.3 D	0.9 D

Attaching activating groups on the imine N

